

Chemical Handling Guide.

There is no 'one glove fits all' chemical handling solution.

Knowing which glove for which chemical is a real 'acid test'. Fail the acid test and you put yourself and your employees at risk of costly and serious injury - even death.

Did you know that our PVA (Polyvinyl Alcohol) coated glove will protect you from some of the most dangerous chemicals on the market? In fact, the glove can remain submersed in Ethylene Dichloride, a suspected carcinogen, for at least six hours before signs of permeation breakthrough. It can also withstand Methyl Ethyl Ketone (MEK), Methylene Chloride, Toluene and Xylene and a range of other notoriously dangerous chemicals where many other gloves fail.

Yet, this same PVA glove will dissolve in water.

Such is the unpredictable, complex and dangerous nature of chemicals.

Even the best-made, most sophisticated glove offers little protection if it's the wrong glove.

Ansell Chemsafe[™] is an initiative designed to help ensure you and your workers are adequately protected. It contains critical chemical handling advice, support, information and SpecWare[™] – the ultimate tool for selecting the right glove for the right chemical.

For more information visit www.ansellchemsafe.com

Select the right glove, not just the best glove.

There is no ideal universal glove that will protect you from are important or a **supported** glove, which contains a each and every possible risk. Each chemical and each application needs to be analysed to ensure critical, unique depend on how much durability is required, whether the requirements are met.

The selection process for chemical resistant gloves should follow a simple step-by-step process, to ensure you select the right glove not just the best glove.

Step 1 – Glove compound.

Use the SpecWare[™] guide to research which glove compound is required.

The first and most important step is to determine what material composition or compound is required to handle the specific chemical. Our SpecWare™ glove guide contains information on the suitability of various glove compounds, such as nitrile, PVC, neoprene, etc, for over 160 pure chemicals. (For chemical mixes, seek further advice from Ansell).

Step 2 – Glove construction.

Evaluate the physical application characteristics to determine the most suitable glove construction.

You have the option of 3 basic glove types - disposable, for very basic protection with frequent changing, a longer lasting **unsupported** glove where flexibility and dexterity

cotton liner for more heavy-duty use. Your choice should glove needs abrasion or cut resistance, the degree of contact with the chemical, etc. The Product section of this brochure contains more details and useful information on glove performance that will assist you with this selection.

Step 3 – Glove options.

Select the specific option or features that various gloves offer.

Having determined which glove compound and glove construction, all you need to do is decide which features or options you required – such as grip style, length, thickness, glove lining, color, etc. As you will see in the Product Specification section, there are many to choose from.

Following these 3 basic steps and using the technical data provided by Ansell will take the guesswork out of knowing which is the **right** glove for your job.

Step 1 – Which Glove Compound?

There's no point in selecting the best glove if it's not the right glove.

Our SpecWare™ chemical handling guide will recommend a glove that will safely handle specific chemicals by providing are the highest flow rates recorded for the permeating permeation and degradation resistance information.

Permeation/Degradation Resistance Guide for **Ansell Chemical Resistant Gloves.**

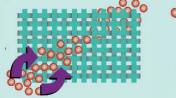
Ansell's ASTM standard permeation and degradation tests are presented on the following pages as an aid in determining the general suitability of various products for use with specific chemicals. Because the conditions of ultimate use are beyond our control, and because we cannot run permeation tests in all possible work environments and across all combinations of chemicals and solutions, these recommendations are advisory only.

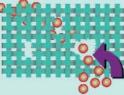
Definition of key terms.

Permeation is a process by which a chemical can pass through a protective film without going through pinholes, pores or other visible openings. Individual molecules of the chemical enter the film, and "squirm" through by passing between the molecules of the glove compound or film. In many cases the permeated material may appear unchanged to the human eye. Chemical permeation can be described in simple terms by comparing it to what happens to the air in a balloon after several hours. Although there are no holes or defects, and the balloon is tightly sealed, the air gradually **Permeation** is a process by which a **Degradation** is a reduction in one or more passes through (permeates) its walls and escapes. This simple example uses gas permeation, but the principle is the same with liquids or chemicals. Permeation data are presented in two values:

Methodology.

Permeation testing.

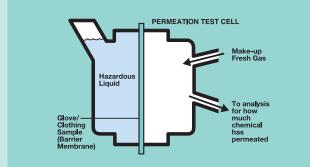

Ansell conducts permeation testing in accordance with ASTM Method F 739 standards. A specimen is cut from the and measured, and then completely immersed in the test glove and clamped into a test cell as a barrier membrane chemical for 30 minutes. The percentage of change in size (see illustration below). The "exterior" side of the specimen is is determined, and the films are then dried to calculate the exposed to a hazardous chemical. At timed intervals, the percentage of weight change. Observed physical changes are unexposed "interior" side of the test cell is checked for the also reported. Ratings are based on the combined data. presence of the permeated chemical and the extent to which it may have permeated the glove material. This standard allows a variety of options in analytical technique and collection media. At Ansell, dry nitrogen is the most common medium and gas chromatography with FID detection is the most common analytical technique. Our Research Department also uses liquids such as distilled water and hexane as collecting media, and techniques such as conductivity, colourimetry, and liquid chromatography for analysis of the collecting liquid.



Breakthrough time and Rate. Breakthrough times (min.) are the times observed from the start of the test to first detection of the chemical on the other side of the sample (for test methodology, see the outside back cover of this guide). These times represent how long a glove can be expected to provide effective permeation resistance when totally immersed in the test chemical. Permeation rates chemicals through the glove samples during a six-hour test. These qualitative ratings are comparisons of permeation rates to each other.

Degradation is a reduction in one or more physical properties of a glove material due to contact with a chemical. Certain glove materials become hard, stiff, or brittle, or they grow softer, weaker, and swell to several times their original size. If a chemical has a significant impact on the physical properties of a glove material, its permeation resistance is quickly impaired. For this reason, glove/chemical combinations rated "Poor" or "Not Recommended" in degradation testing were not tested for permeation resistance. Please note, however, that permeation and degradation do not always correlate.

The overall Degradation **Rating** for each chemical is explained in "How To Read The Charts."


chemical can pass through a protective film. physical properties of a glove material.

THE SUITABILITY OF THE PRODUCT FOR A SPECIFIC JOB MUST BE DETERMINED BY TESTING BY THE PURCHASER.

Degradation testing.

Films of the test material are made. These films are weighed

Permeation/Degradation Resistance Guide for Ansell Gloves.

How to read the charts.

Three categories of data are represented foreach Ansell product and corresponding chemical:1) overall degradation resistance rating;

2) permeation breakthrough time, and

3) permeation rate.

Standards for Colour-Coding

A glove-chemical combination receives **GREEN** if either set of the following conditions

is met:

- The degradation rating is Excellent or Good
- The permeation breakthrough time is 30 minutes or longer
- The permeation rate is Excellent, Very Good, or Good.

OR

- The permeation rate is not specified
- The permeation breakthrough time is 240 minutes or longer
- The degradation rating is Excellent, Very Good, or Good

A glove-chemical combination receives

RED if: the degradation rating is Poor or Not Recommended, regardless of the permeation rating.

All other glove-chemical combinations receive **ORANGE**. That means, any glove-chemical combination not meeting either set of conditions required for Green, and not having a Red degradation rating of either Poor or Not Recommended, receives an **ORANGE** rating.

Key to Permeation Rate	
	Simply Stated Drops Per Hour Through A Glove (Eyedropper size drop)
E – Excellent; permeation rate of less than 0.9 µg/cm²/min.	0 to 1/2 drop
VG - Very Good; permeation rate of less than 9 µg/cm²/min.	1 to 5 drops
G - Good; permeation rate of less than 90 µg/cm²/min.	6 to 50 drops
F – Fair; permeation rate of less than 900 μ g/cm ² /min.	51 to 500 drops
P – Poor; permeation rate of less than 9000 µg/cm²/min.	501 to 5000 drops
NR – Not Recommended; permeation rate greater than 9000 μg/cm²/min.	5001 drops up
Note: The current revision to the ASTM standard permeation to	et calle for permeation

Note: The current revision to the ASTM standard permeation test calls for permeation to be reported in micrograms of chemical permeated per square centimetre of material exposed per minute of exposure, "µg/cm²/min."

Key to Permeation Breakthrough

>Greater than (time) <Less than (time)

Key to Permeation Degradation Ratings

- E- Excellent; fluid has very little degrading effect.
 G- Good; fluid has minor degrading effect.
 F- Fair; fluid has moderate degrading effect.
 P- Poor; fluid has pronounced degrading effect.
 NR- Fluid is not recommended with this material.
 - rated P (poor) or NR (not recommended) in degradation testing were not tested for permeation resistance. A dash (-) appears in those cases.

NOTE: Any test samples

Specific Gloves Used for Testing

Degradation	Permeation							
Sol-Vex® 37-145	Sol-Vex® 37-165							
(11 mil/0.28 mm)	(22 mil/0.54 mm)							
29-865	29-865							
(15 mil/0.38 mm)	(15 mil/0.38 mm)							
PVA™	PVA™							
Snorkel®	Monkey Grip™							
Canners 392	Canners 392							
(19 mil/0.48 mm)	(19 mil/0.48 mm)							
Chemi-Pro™ 224	Chemi-Pro™ 224							
(27 mil/0.67 mm)	(27 mil/0.67 mm)							
Laminated LCP™ Film Barrier™ 2-100 Barrier™ 2-100								
(2.5 mil/0.06 mm) (2.5 mil/0.06 mm)								
I and metric millimetre (n	nm) for Unsupported							
by glove weight, not thic	kness.							
	Sol-Vex® 37-145 (11 mil/0.28 mm) 29-865 (15 mil/0.38 mm) PVA™ Snorkel® Canners 392 (19 mil/0.48 mm) Chemi-Pro™ 224 (27 mil/0.67 mm) Barrier™ 2-100 (2.5 mil/0.06 mm) I and metric millimetre (n							

Why is a product with a shorter breakthrough time sometimes given a better rating than one with a longer breakthrough time?

One glove has a breakthrough time of just 4 minutes. It is rated "very good," while another with a breakthrough time of 30 minutes is rated only "fair." Why? The reason is simple: in some cases the *rate* is more significant than the *time*.

Imagine connecting two hoses of the same length but different diameters to a faucet using a "Y" connector. When you turn on the water, what happens? Water goes through the smaller hose first because there is less space inside that needs to be filled. But when the water finally gets through the larger hose it really gushes out. In only a few minutes, the larger hose will discharge much more water than the smaller one, even though the smaller one started first.

The situation is similar with gloves. A combination of a short breakthrough time and a low permeation rate may expose a glove wearer to less chemical than a combination of a longer breakthrough time and a much higher breakthrough rate, if the glove is worn long enough.

DD Ratings:

DD is a new degradation rating that sometimes applies to Viton/Butyl gloves versus certain chemicals. It means "Degrades and Delaminates". If a chemical causes severe swelling of Viton but has little effect on Butyl, the adhesion between these two rubber layers can be overcome under the relatively severe continuous-liquid contact. The end result of this stress is Viton 'blisters' or even complete layer separation. This damage is permanent. Any chemical with a DD rating against Viton/Butyl gloves receives an automatic 'Not Recommended' red colour code.

	ENE/ RUBBER 4D ROTM*	Permeation: Permeation: Rate	ш	0			\vdash	5		19	U	u	.			٩.		Ŋ	+	5 ш		(\vdash						J	$\left \right $	12	$\left \cdot \right $
H	NEOPRENE/ Natural Rubber Blend Chemi-protm*	Degradation Rating Breakthrough	E 10	-10 С 10 10	н 19	л В	20 21	>360	E 240	П 7 45	E 20	00 U	~			10	<mark>1 120</mark>	E 45	r 148	п 100 100	- H		с 20 20		 N			NR		л <mark>2</mark>		8 Т	>360
	<pre></pre>	Permeation: Rate	ш		Ŋ		Ŋ		1	I D	Ŋ	1	2	(5	۵.		Ŋ	g	5 0	1	(5 S		1	L I		1	1	0	1	1 2	
	NATURAL RUBBER Premium Pink ^{tm*}	Permeation: Breakthrough	2	110	48	22 I	>10	1 8	6	25	25	0	2	(<u> </u>	-10 -10	0 <u>6</u>	20	44	68	1	ç	22		0	20		1	090/	102	1	15	20
	REM	Degradation Rating	ш	шш	ш	ц Ц	ш	ш	шŞ	EШ	ш	۲ ۲	S R	er d	1		п	ш	ш	υш	RR :	Y u	ш		۳	-	E R	RN	۳ ۲	ш	۹.	¥ш	ш
	┟ ᅖ_ _ह	Permeation: Rate				11	۵È	5		ш	9				-	ш		Ŋ	9			-			1	ш		1		ш		11	
	POLYVINYL Chloride (Vinyl) Snorkelt	Breakthrough Permeation:	1	180	1		09	۵ ^360	240	121	180	120		'	2	- 10	80 1000	180	397		1	52		Ι	8	69		I	×360	200 2000 2000	Ι		
	- s	Degradation Rating	R	ч ¥	R S	۲ ۲	<u> </u>	ш	ш	ר נס	ш	U H	g	(ן פ		IJ Ţ	G	ш	L H	g	- ₽			۳	- 9	E E	ш	G U	υш	R	r R	AR AR
	LIED ≥	Permeation: Rate			G				Ľ	u (J	\square	ш	+			ш	ш	+	_	59	\square		-	Ľ	+		╞	Ľ		·	ш	-	ш
	SUPPORTED Polyvinyl Alcohol Pvatm	Breakthrough Permeation:			150					180 180	>360	1 2/	>360			>480	1360	75	×480	120)99C >300	×360	22		>360	×480	800		1	1 80	×480	150	1 2360
		Rate Degradation Rating	R						ER C	5 U	LL	۳ ۲					۲ ۲	5 LL	ш І		ш			ŀ	ш	ш	ם ר ר	ц.	۹ ۲	L ()	ш		
E	VITON Butyl UNSUPPORTED Chemtektm	Breakthrough Permeation: Rate	 	0 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	\vdash) M		Ľ		\square		\square			195 VG		$\left \right $	000	<u>р</u> 2 8	\square	480	╋	\square	+	30 Ч	+	Ľ		ш . ©	Ľ	_	480 16
	NT BU UNSUP CHEM	Degradation Rating Breakthrough	0D >480	0 >480 93	02	>480 >480	>180	>480	>480	>480	>480	E >480				φ <u></u>	-480 -480	>480	>480	2460 2480	138		465		F >480	248(>480	>480	>480	▲ >480		ſ	E >480
		Permeation: Rate Degradation			ш				(5 ш	ш	; ц		' 		<u>а</u>	୯	δШ		ш		1 1	чш	·	ц.	ш	- ш		1	' ш			
	BUTYL UNSUPPORTED CHEMTEK TM	Breakthrough Breakthrough	>480	>480	>480	>480	>480	>480	>480	>480	>480	>480 >480	202			1	>480	>480	>480	>480 >480		15	>480		9	>480	>480		>480	480	>480	>480	>480
	B UNSU	Degradation Rating	ш	шш	ш	шш	ш	ш	ш	5 ш	ш	шц) J LL			1	шц	. ш	ш	υш	1	L L	υш			л о	- ш	RN	ш	і ш	ш	2 ш	
	E ED	Permeation: Rate	ш	ш	IJ		NG			۱Ŋ	۹.				ш	۵.		Ŋ	LL L	L (LL	1	0	L							۱Ŋ		0	ш
M	UNSUPPORTED NEOPRENE NEOPRENE TM	Permeation: Breakthrough	10	60 10	20	1 390	140	>480 >480	250	290	100	>480			 >480	<10	420	210	188	190	1	0	120						/ 100	390	1	140	<10
		Degradation Rating	ш	шш	ш	ц Ц	ш •	4 ш	ш	Eш	ш	J L	R	Щ Ч	ш		ш <mark>а</mark>	ш	σL	υш	HR I		υш		er R	2 g	R R	NR	۳ ۲	υш	۹.	Ξu	ш a
	E (TM/ CTM	Permeation: Rate			ш		ш		$\left \cdot \right $	5 ш	Ľ			ш	5 ш	ш	ш	. ш	ш	21	ш	IJ (5 0		1	ш		U		ш		ш	
-10 E	NITRILE SOL-VEX TM / ALPHATEC TM	Breakthrough Breakthrough		270	30	07 170	140	28 28 28 28 28 28 28 28 28 28 28 28 28 2	>360	80		ا % %	1	×480	7480 1/10	53	120 75	>360	323	<u></u> , ∃	က္တ	150	210			120		120	240	200 200 200 200 200 200 200 200 200 200	103	240 240	>360 45
		hate Degradation Rating	a	U U U	ш (<u>ເ</u>	ш.	∢ Ш	ш I	ш	R	ш 🖞	<u>م</u>	шı	ш		L L	ш	ш	u R	G	<u>ح</u>	L ()		۳ ۳	ш <mark>9</mark>		G	u. U	ш	LL I	цΩ	U U
	ATED M Ertm	Breakinrougn Permeation: Rate	Ш		$\left \right $		\square				ш Q		+			ш Q		$\left \right $			$\left \right $		-	30 E	ш о		+			ш	$\left \right $		
	LAMINATED FILM Barriertm	Rating Permeation: Breakthrough		150 >480		- 480		₽		248U	▲ >480						▲>480>480				>480				>480	6				1 4	▲ >480	>480	
		Degradation Rating															< <				•			•	•			1					
SpecWare Technical Support online	This information applies only to	AIISUI YIUVU UTAIIUS. CHEMICAL		2. Acetic Acid 3. Acetone	L I.	5. Acrylic Acid 6. Acrylonitrile		8. Ammonia Gas 9. Ammonium Fluoride, 40%		11. Arriyi Acetate 12. Amyi Alcohol		14. Aqua Regia 15. Benzaldehvde					21. Bromopropionic Acid 22. Brithil Acetate	23. Butyl Alcohol		23. Buryl Cellosofve 26. gamma-Butvrolactone			29. Cellosolve Acelate 30. Cellosolve Solvent		32. Chlorobenzene	33. 2-Chlorobenzyl Chloride	35. Chloronaphthalene		37. Chromic Acid, 50%	30. Outlic Add, 1070 39. Ovclohexanol		41. 1,5-Cyclooctadiene 42. Diacetone Alcohol	43. Dibutyl Phthalate 44. Diethvlamine

	>360 E 15 F		20 E F		20 VG	13 vG >360 40 G-VG		40 F-G	>360 E	>360 >360 150	<15 F 90 —		40 VG >360	×360 ×360		<pre><10 F 20 VG >480 E</pre>	20 VG		р 6	50 E		 06	40 G 30 VG 50 G	1 00	×360 ×360	□ 090 090	180 >360 - >360 - >360 -	30 VG			×360 ×360	>360			и Ш		30 VG
15 0G E	⊥ □ ⊥ ^390 22 1	E E E >3900 − 1 >3900 −	37 VG	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	255 VG	15 VG H R 150 VG	210 VG	150 E	3 150 VG E >360 E E	230 = E = E = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100	 <15 F >360 G 	>480 >360 = 15 VG = 1	3 3	L M M M -	7400	 <10 <10							3 5 G G U	I C I I C I S 390 A S A A	>360 = E		L C C C L	0 0 0 7 7 1				→ → → → → → → → → → → → → → → → → → →			42 H H H H H H H H H H H H H H H H H H H	227 VG F P C	
		H H H H H H H H H H H H H H H H H H H		NR >360 E		H H H H H H H H H H H H H H H H H H H	N N N I I I I I I I I I I I I I I I I	NR	NR NR NR	G H H H H H H H H H H	 - -	→ 200 H H H H H H H H H H H H H H H H H H	G 150 F >360 E N N	G 125 G N 4 2360 - 5360 - 5360 - 5360 - 5360 - 5360 - 5360 - 5360 - 54600 - 54600 - 54600 - 54600 - 5460 - 5460 - 5460 - 5460 -	P 0 G 45 G E 135 VG E					H NR	F 120 VG N 360 - 0	P 345 N			→ 2360 → E E >360 → E E = >360 → E E = >	NR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 3	■ NN NG VG NG NG		NH NH 360 - - - 360 - - - -	G G I >360 I I	F 25 G >360 E A			→ 300 H H H H H H H H H H H H H H H H H H	1 G G G G G G G G G G	7 C 5 1 1
<mark>С 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</mark>	царана 1 1 30 1 1 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ш	Ц Ш Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц	E >360 E 120 VG	G >360 E 75 G	Щ	E	E >390 B C C .	NR 2480 E				G H I I I I I I I I I I I I I I I I I I	VI G VI I >480 I I +80 I	I I I I I S I I S I I S	а 390 30 а 20 1 а 20 1 1 1 1 1 1 1 1 1 1	C C C C C C C C C C	E 2360 E	Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц	□ □ □ □ □ □ □ □ □ □ □ □	▲ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		с с с с с с с с с с с с с с	н	7 IT 7 0	E E C C C C C C C C	H H H H	P G 1 120 VG 1	Ц Ш Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц		<mark>о с с с</mark>	□	E E E C C C C C C C C C C	E E >390 E >390 E	ц с с с с с 2360 2360 2360 2360 2360 2360 2360 2360 2360 2360 2360 2360	G F A A A A A A A A	2 0 1 1 2 0 1 1 3 0 1 1
0 15 G 00 >480	D >480		E >480 — 0 =	 → 1 → 480 → 480 		G >480	E >480	= >480 G = -		 >480 >480 		<pre>>480</pre>	 >480 >480 1 >480 1 	► 2480	0 363	10 17 F ► >480 E 	E >480 E = 17 G = 17 10 10 10 10 10 10 10 10 10 10 10 10 10	00000000000000000000000000000000000000		D 235 VG	► >480	► >480 	E >480 – 98 E 00 255 E	<pre> </pre>		×480	► >480 >480 235 E	0 - 10 - 1		 >480 >480 >480 	 >480 >480 >480 >480 (3) 		00 10 F 367 - F 	G 178 VG	→ 1000 × 10000 × 10000 × 10000 × 1000 × 10000 × 1000 × 1000 × 1000 × 1000 × 10	100 ≤10 F	2 <u>C</u>
70 G >480 G >480 F >480 F	>480		>480 E			>480	 >480 >480 1 10 1 			>480 			>480 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		25 G C 25	17 F 13 P 13 P 15 G 17 F	45 VG 43 G 18 G 7 200 200	, <u>1</u>				>480				>480	- 35 G - 1	1		 <10 >480 		>480 			2/80 E F	
360 - - - 360 - - -	>480 E -360 E	□ □	113 VG	>480	 <10 F N I I N N	30 P 200 G 200 C 200 C	>480 E E 333 P H	15 − − − − − − − − − − − − − − − − − − −	 <10 380 >480 E 	>480	>480	230 E F	 <10 VG <170 VG <170 P <2480 	>480 >480 		→ 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1	0 0 0 1 1 1 1 1 1 1 1 1	L L L 1 1 1 1 1 1		260 E	100 F	>480		 1 410 410 6 1 1 	>480	20 151 F 	140 F E >480 — A 37 F A	>480 E	>40 1		→480	53 G – – – – – – – – – – – – – – – – – –		240 E	 √10 √10 √10 √10 √10 	 <10 <10 <10 <10 <10 <!--</th--><th>1 1 1 1 102 E L L</th>	1 1 1 1 102 E L L
120 120 120 	□ 380 E G 380 E C 380	→ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	A >480 E =	 N N	120 G F 210 G F	240 E	► >360 92 E NR 92 F	>360 E E E = 2480 E E	10 F	×360 × 360 × 120 ×	 <15 >360 - <	360 E E E	E E E E >360 E E E E	×360 ×360 ×360 ×360 ×360 ×360 ×360 ×360	2000 F G G >3600 E E E	23 E E E				→ → → → → → → → → → → → → → → → → → →	E G 2 200			2300 Е Е Е	□ E E E E >390 >390 >30 >30 >30	>300 F F >360 F F 300 VG F	□ □ □ □ □ 1 ⊥ 1 1 3260 3360 3360	→480 E → 20 G ← >360 E ←		E E E M >390 E I I >390 I I I	<pre>>360</pre>			3 - >480 E	→ 300 E C C C C C C C C C C C C C C C C C C		- - - - - - - - - - - - -
→480 E NI →480 E NI →480 E NI →480 E NI	>480 E G >480 E		► >480 E NI ► >480 E NI >480 E NI	>480 — NI >480 E E E	>480 E G	>480 E		► 2480 E E	▲ 164 E F → → → → E F ▲ >480 → E F		► >480 E		▲ >480 E E E E E E E E E E E E E E E E E E E	 ▲ >480 E □ 		 >480 E 440 E 440 E 1 = 6 	► >480 E Ni E 20 VG Ni E >480 E Ni >480 E Ni	► >480 E NI ► >480 E F > ► >480 E F P	► 24600 E ► ► ► 24800 E ► ► ► ► 24800 E ► ► ► ► 54800 E ► ► ► ► 54800 E ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	>	▲ >480 E E = =	NI NI	>480 E NI >480 E NI >480 E R			→ → → → → → → → → → → → → → → → → → →	→480 E →480 E →480 H F F E E E E E		>480 	>480 E NI >480 – E >480 – E	>480 E NI - - - - - - - - NI - - - - NI		→480 E MI >480 E F >480 E NI →480 E NI	► >480 E ► >480 E − E − - E		 √100 <l< th=""><th>7.7.00 E E E A 2480 E F F F F F F F F F F F F F F F F F F</th></l<>	7.7.00 E E E A 2480 E F F F F F F F F F F F F F F F F F F
0,															ane	yanate), MDI																					
Di-Isobutyl Ketone, DIBK Dimethyl Acetamide, DMAC Dimethyl Formamide, DMF Dimethyl Sulfoxide, DMSO	ctyl Phthalate, DOP Kane trolace Conner	lectroless Oopper lectroless Nickel pichlorohvdrin	dium Bromide, 10% // Acetate // Alcohol	thylene Dichloride thylene Glycol thylene Oxide Gas	yl Ether // Glycol Ether	mic Acid, 90% ural	Glutaraldehyde, 25% Gasoline (hi-test) HCFC-141h	amethyldisilazane ane : 7100	HFE 71DE Hydrazine, 65% Hydrobromic Acid	Hydrochloric Acid, conc. Hydrochloric Acid, 10% Hydrofluoric Acid, 48%	trogen Fluoride Gas trogen Peroxide, 30%	ophosphorus Acid droquinone, saturated outyl Alcohol	Isopropyl Alcohol Kerosene Lactic Acid, 85%	ric Acid, 36%/EtOH imonene aic Acid, saturated	oury hethoxy-2-acetoxyprop: hyl Alcohol hylamine	hyl Amyl Ketone hyl Cellosolve hylene bis (4-phenyliso	Methylene Bromide Methylene Chloride Methyl Ethyl Ketone, MEK Methyl Glycol Ether	hyl lodide hyl Isobutyl Ketone hyl Methacrylate	in-Interryr-z-r-tyrrolidorie Propane Gas Methyl t-Butyl Ether Mineral Soirits villa 66	pholine iatic Acid	htha VM&P c Acid, 10%	Nitric Acid, 70% Nitric Acid, Red Fuming	obenzene omethane, 95.5% opropane, 95.5%	yi Alconoi c Acid o-Chlorotoluene	alic Acid, saturated I Etch 1(Ashland Chem mitic Acid, saturated	Perchlorophenol, 5% Perchloric Acid, 60% Perchloroethylene	Phenol Phosphoric Acid, conc. PMA Glycol Ether Acetate Potassium Hydroxide, 50%	Propane Gas Propyl Acetate Propyl Alcohol	pylene Oxide Idine ober Solvent on Ftch	Skydrol hydraulic fluid Sodium Hydroxide, 50% Stoddard Solvent	Styrene Sulfur Dichloride Sulfuric Acid, 95% Sulfuric 47% battery acid	uric Acid 120%, Oleurr nic Acid, 65% achloroethene	ahydrofuran, THF lene, toluol lene Di-Isocyanate	lylamine hloroethylene, TCE hlorotrifluoroethane	resyl Phosphate, TCP thanolamine, 85% bentine	rel SMT rel XE	veruer xr Vertrel XM Vinyl Acetate Vinyl Chloride Gas
45. Di-l 46. Dirr 47. Dirr 48. Dirr	50. Dio	52. Elec 53. Epic	54. Eth 55. Eth 56. Eth	57. Eth 58. Eth 50 Eth	60. Eth	63. For 63. For 64. Furf	65. Glu 66. Gas 67 HCF	69. Hey 70. HE	71. HFI 72. Hyc 73. Hyc	74. Hyc 75. Hyc 76. Hyc	77. Hyc 78. Hyc	79. Hyr 80. Hyc 81. Isot 87. Isot	83. Iso <u>r</u> 84. Ker 85. Lac	86. Lau 87. d-L 88. Mal	90. 1-n 90. 1-n 91. Met 92. Met	93. Me 94. Met 95. Met	96. Met 97. Met 98. Met 99. Met	100. Met 101. Met 102. Met	103. N-IV-IV-IV-IV-IV-IV-IV-IV-IV-IV-IV-IV-IV-	1 1 1		112. Nitri 113. Nitri		117. Oct 118. Ole 119. orth	120. Ox: 121. Pac 122. Palr	123. Fer 124. Per 125. Per 126. Per	127. Phr. 128. Phr. 129. PM. 130. Pot	131. Pro 132. Pro 133. Pro	134. Pro 135. Pyr. 136. Ruk 137. Silio		141. Styr 142. Sulf 143. Sulf 144. Sulf					158. Ver 159. Ver 159. Ver	161. Vert 161. Vert 162. Viny 163. Viny

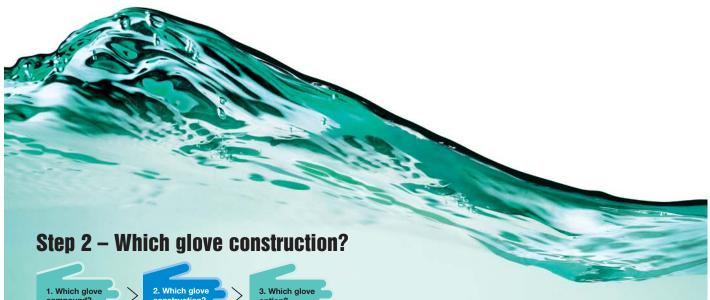
The first square in each column for each glove type is colour coded. This is an easy-to-read indication of how we rate this type of glove in relation to its applicability for each chemical listed. The colour represents overal rating for both degradation and permeation. The letter in each square is for Degradation alone...

Note: All numeric designations within the product classifications are denoted in min

- A degradation test against this chemical was not run. However, since its breakthrough time is greater tha 400 minutes the Demendetion Define is executed to be **Cond to Evendlant**
- 4-ou minutes, the beginatation naming is expected to be avoid in a covenient. A degradation test against this chemical was not nun. However, in view of degradation tests performed with
- similar compounds, the Degradation Fating is expected to be **Good** to **Excellent** AUTION: This product contains natural rubber latex which may cause allergic reactions in some individuals.

COLAL NOTE: The chemicals in this guide highlighted in LIGHT BLUE. A are experimential carcinogens, ording to the minth edition of Serv Dangerous Properties of Industrial Materials.

emicals highlighted in GREY \square are listed as suspected carcinogens, experimental carcinogens at remety high dosages, and other materials which pose a lesser risk of cancer.


		NITRILE			VINYL		NATU	JRAL RUE	BBER
This information applies only to		CH N TU VIRTEX 0.12mm		FRE	SH TOU 0.12mm	CH™	C	ONFORM 0.12mm	TM.*
Ansell glove brands.	Degradation Rating	Permeation Breakthrough	Permeation Rating	Degradation Rating	Permeation Breakthrough	Permeation Rating	Degradation Rating	Permeation Breakthrough	Permeation Rating
CHEMICAL		a y	Ъе		a y	Re Re			
1. Acetaldehyde	Р	_	—	NR	_	—	E	<10	F
2. Acetic Acid	E	10	—	G	45	_	E	10	—
3. Acetone	NR	_	—	NR	_	—	Р	_	—
4. Acetonitrile	F	<10	G	NR	_	_	G	<10	G
5. Ammonium Fluoride	E		—	E	240	_	E	360	—
6. Ammonium Hydroxide	G	20	—	E	240	_	E	11	—
7. Aniline	NR	_	—	G	20	VG	E	<10	G
8. Butyl Acetate	NR	_	—	NR	_	_	NR	_	—
9. Butyl Alcohol	G	475	G	VG	<10	F	E	<10	G
10. Butyl Cellosolve	NR	_	—	Р	_	_	E	<10	F
11. Citric Acid, 10%	E	>480	—	E	>360	—	E	>480	—
12. Cyclohexanol	E	_	—	E	60	E	E	<10	G
13. Dimethyl Formamide	NR	_	—	NR	_	—	E	<10	G
14. Dimethyl Sulfoxide	F	10	E	NR	_	_	NR	_	—
15. Ethanolamine	E	>480	—	E	120	_	E	120	—
16. Ethyl Acetate	NR	_	—	NR	_	_	G	<10	F
17. Ethyl Alcohol	F	10	VG	VG	<10	F	E	<10	VG
18. Ethylene Dichloride	NR	_	—	NR	_	—	NR	_	—
19. Ethylene Glycol	E	38	G	E	45	VG	—	_	—
20. Ethyl Ether	G	<10	G	Р	_	—	F	<10	Р
21. Formaldehyde	E	>480	E	E	20	VG	E	<10	E
22. Gasoline (Shell 92 oct.)	F	<10	G	Р		—	NR	_	—
23. Hexane	E	>480	E	NR	_	_	NR	<10	F
24. Hydrazine	E	<10	F	E	>360	E	G	25	F
25. Hydrochloric Acid, conc.	E	78	—	G	>360	_	E	55	—
26. Hydrogen Peroxide, 30%	E	200	—	E	>360	E	E	>480	Е
27. Isobutyl Alcohol	G	61	VG	G	10	VG	E	<10	F
28. Isopropyl Alcohol	E	10	VG	VG	<10	F	E	<10	VG
29. Kerosene	E	>480	—	G	30	G	NR	_	—
30. Maleic Acid, saturated	E	>480	—	VG	>360	—	—	_	—
31. Methyl Alcohol	E	<10	G	VG	10	G	E	<10	VG
32. Methyl Ethyl Ketone	NR	_	—	NR	_	—	F	<10	F
33. Methylene Chloride	NR	_	—	NR	_	_	NR	_	—
34. Nitric Acid, 10%	E	>480	Е	VG	>360	E	G	>480	Е
35. Octyl Alcohol	E	350	Е	G	9	E	_	_	—
36. Perchloroethylene	G	10	G	Р	_	—	NR	—	—
37. Phenol	NR	_	—	G	30	VG	—	_	—
38. Phosphoric Acid, 85%	—	_	—	G	>360	_	F	>480	-
39. Propyl Alcohol	Е	125	VG	G	<10	F	Е	<10	G
40. Sodium Hydroxide, 50%	E	>480	—	Е	>360	_	Е	>480	—
41. Stoddard Solvent	E	>480	—	G	40	Е	NR	_	—
42. Sulfuric Acid, 47%	Е	>480	—	G	>480	_	Е	>480	
43. Tricresyl Phosphate	G	10	F	G	>360	Е	—	—	—
44. Triethanolamine, 85%	Р		_	Е	>360	E	Е	>480	_
45. Xylene, Xylol	G	<10	F	NR	_	—	NR	—	—

NEOPRENE/ NATURAL RUBBER BLEND CHEMI-PRO™*

NOTE.

These recommendations are based on laboratory tests, and reflect the best judgement of Ansell in the light of data available at the time of preparation and in accordance with the current revision of ASTM F 739. They are intended to guide and inform qualified professionals engaged in assuring safety in the workplace. Because the conditions of ultimate use are beyond our control, and because we cannot run permeation tests in all possible work environments and across all combinations of chemicals and solutions, these recommendations are advisory only. The suitability of a product for a specific application must be determined by testing by the purchaser. The data in this guide are subject to revision as additional knowledge and experience are gained. Test data herein reflect laboratory performance of partial gloves and not necessarily the complete unit. Anyone intending to use these recommendations should first verify that the glove selected is suitable for the intended use and meets all appropriate health standards. Upon written request, Ansell will provide a sample of material to aid you in making your own selection under your own individual safety requirements.

NEITHER THIS GUIDE NOR ANY OTHER STATEMENT MADE HEREIN BY OR ON BEHALF OF ANSELL SHOULD BE CONSTRUED AS A WARRANTY OF MERCHANTABILITY OR THAT ANY ANSELL GLOVE IS FIT FOR A PARTICULAR PURPOSE. ANSELL ASSUMES NO RESPONSIBILITY FOR THE SUITABILITY OR ADEQUACY OF AN END-USER'S SELECTION OF A PRODUCT FOR A SPECIFIC APPLICATION.

A glove's chemical resistance performance will be influenced of small components. The external compound of a by the nature of the job. If a glove tears or cuts easily, it will not provide adequate chemical protection.

The next step in the selection process is to evaluate the job to be performed and consider whether you will need a disposable, an unsupported or a supported glove.

The more commonly used gloves in chemical handling applications are **unsupported** and **supported** gloves. Both types will provide similar chemical protection, as the thickness of the compound, the critical element in chemical other important considerations, can also be similar. The main can provide more comfort and sweat absorption. difference is that **supported** gloves have a cotton liner that makes the overall glove thicker and gives it more structural strength and resistance to tearing. **Disposable** gloves are designed for extremely lightweight applications. More information on each glove type is below:

Disposable gloves are very thin, and, as the name suggests, are not designed for long-term use. Should only be used for basic chemical protection and are designed for very light duty work where frequent changes will occur. Splash protection (for suitable chemicals) is a good example of where a disposable glove may be used. Refer to the separate table in SpecWare[™], which contains chemical resistance specifically for disposables.

Unsupported gloves are more suitable for a wide range of applications. 'Unsupported' simply means they don't have an internal material lining. They are designed this way to allow for good dexterity, tactility and flexibility. They are more suited, for example, to applications that require the handling **1010** dangerous.

Step 3 – Which glove option?

grip pattern, lining, color and size. You can choose from best glove. these options to ensure optimal suitability of the glove to the application.


Note: All numeric designations within the product classifications are denoted in minutes.

*CAUTION: This product contains natural rubber latex which may cause allergic reactions in some individuals.

glove determines chemical resistance, so the absence of a cotton lining will have no impact on its chemical permeation performance.

Supported gloves will contain a liner, usually made from knitted cotton, to give the glove a stronger construction for more heavy-duty work. This internal liner makes the glove thicker overall and is designed to provide more strength, not necessarily more chemical resistance. While Supported gloves are less dexterous and flexible than Unsupported protection, is often similar. Abrasion and cut resistance, two gloves, they are generally stronger and with the cotton liner

> As part of European Std EN388, each of our products is tested for 'mechanical hazards' performance, which is a useful tool for glove selection. This measures performance in critical areas such as abrasion, cut, tear and puncture resistance. The results for each product are shown below a 'mechanical hazards' icon in the product section. The four numbers relate to the gloves resistance to abrasion, cut, tear and puncture. All ratings have a maximum score of 4, except cut resistance, which is based on a maximum of 5. The higher the score, the more resistance the glove will offer in that area.

MECHANICAL Use the Mechanical Hazards ratings to ensure the construction of the glove will support its chemical resistance performance. If any of the gloves you are currently using don't have this, it means they are not Standards approved and could be

Ansell's range of chemical resistant gloves offers a variety The data in the Product section contains all the information of options. These include variations in length, thickness, you'll need to ensure you select the right glove and the

Product specifications.

The chemical resistant product information section is designed to follow the 3 basic steps for glove selection. The product is grouped by glove compound, the critical selection criteria identified in Step1. The glove construction, as discussed in Step 2, is identified by headings within the table (where certain types are not listed indicates that these are not available in that compound). Individual product specifications are listed which clarify the options available to you as part of **Step 3**.

Flat Film.

Barrier[™] is a state of the art 5 layer flat film glove, offering extremely broad range chemical protection. Barrier[™] features a non-woven polyethylene liner for increased wearer comfort and superior perspiration absorption.

Product Code	Product Name	Thickness	Length	Grip Pattern	Lining	Sizes
Unsupported						
2-100	Barrier™	5 Layer	38-40 cm	Smooth	n/a	7-11
1010 Barrier™					All Products	

Nitrile

Ansell high performance nitrile gloves provide an outstanding combination of strength and chemical resistance and are available in a range of disposable, unsupported and supported variants. Sol-Knit™ is a reinforced, cotton-lined glove with a specially designed rough surface for superior grip and abrasion resistance. Sol-Vex™, an unsupported glove range, is ideal for a wide range of applications and has long been regarded as an industry standard. While, **Touch N Tuff™** is a disposable option featuring comfort, dexterity and cleanliness.

Product code	Product	Thickness	Length	Grip Pattern	Lining	Sizes
Disposable						
92-500	TNT™ Powdered	0.12 mm	24 cm	Smooth	Powder	S-XL
92-600	TNT™ P/Free	0.12 mm	24 cm	Smooth	Pwd/Free	S-XL
92-670A	TNT™ Blue P/Free	0.12 mm	24 cm	Smooth	Pwd/Free	S-XL
79-700	Virtex	0.225mm	310mm	Raised	Unlined	7-11
Unsupported						
37-145	Sol-Vex™ 145	0.28 mm	33 cm	Textured	Unlined	6-11
37-175	Sol-Vex™ 175	0.38 mm	33 cm	Textured	Flock	6-11
37-176	Sol-Vex™ 176 Asia	0.38 mm	33 cm	Raised	Flock	7-11
37-676	Sol-Vex™ 676	0.38 mm	33 cm	Raised	Flock	7-11
37-500	Sol-Vex™ 500	0.38 mm	33 cm	Raised	Flock	7-10
37-165	Sol-Vex™ 165	0.56 mm	38 cm	Textured	Unlined	7-11
37-185	Sol-Vex™ 185	0.56 mm	46 cm	Textured	Unlined	7-11
Supported - Co	otton Lining					
39-122	Sol-Knit™	n/a	31 cm	Textured	Cotton	7-10
39-124	Sol-Knit™ 36	n/a	36 cm	Textured	Cotton	8-10
58-530	AlphaTEC 530	0.6mm	305mm/12"	Textured	Acrylic	8-11
58-535	AlphaTEC 535	0.6mm	356mm/14"	Textured	Acrylic	8-11
1000 TNT TM 2000 Virtex TM	4102 4111 Sol-Vex™ Sol-Knit™ Al	3121 phaTEC™			All Products	

m

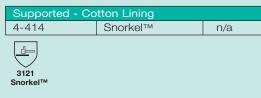
Ansell's range of **Neoprene™** gloves provide protection against a broad range of chemicals. **Neotop™** is an unsupported glove that offers good comfort and flexibility. Scorpio™ offers heavy-duty protection and the specially designed construction provides excellent grip on wet and slippery materials. Neox™ gloves deliver great all round resistance to abrasion, cuts and chemicals and are available in extended lengths. While **Thermaprene™**, also available in longer versions, offers great heat resistance with its specially designed thermal liner.

	p					
Product code	Product	Thickness	Length	Grip Pattern	Lining	Sizes
Unsupported				÷		
29-500	Neotop™	0.75 mm	30 cm	Raised	Flock	8-10
29-865	Neoprene™	0.46 mm	33 cm	Raised	Flock	7-10
Supported - Co	otton Lining					
8-352	Scorpio™ 30	n/a	30 cm	Textured	Cotton	8-10
8-354	Scorpio™ 36	n/a	35 cm	Textured	Cotton	8-10
9-922	Neox™ 30	n/a	30 cm	Smooth	Cotton	10
9-924	Neox™ 36	n/a	36 cm	Smooth	Cotton	10
9-928	Neox™ 46	n/a	46 cm	Smooth	Cotton	10
9-430	Neox™ 78	n/a	78 cm	Smooth	Cotton	10
19-024	Thermaprene™ 46	n/a	46 cm	Textured	Thermal	8 &10
19-026	Thermaprene™ 66	n/a	66 cm	Textured	Thermal	8 &10
						1

ChemTek.

Polyvinyl Alcohol.

PVA™ gloves are lightweight and comfortable, offering superior protection against dangerous organic solvents. The polyvinyl alcohol coating out-performs host other types of chemical resistant gloves and is virtually inert in aromatic and chlorinated solvents.

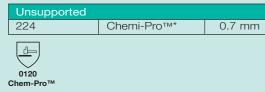

Product Code	Product Name	Thickness	Length	Grip Pattern	Lining	Sizes
Supported - Co	otton Lining					
15-552	PVA™	n/a	31 cm	Smooth	Cotton	9,10
15-554	PVA™ 36	n/a	36 cm	Smooth	Cotton	9,10
4121 PVA TM		(CAUTION: PVA	™ coating is wa		IOT use in wat	er based solutions)

PVC.

Superflex Blue[™] is a premium grade blue PVC glove which delivers superior chemical and abrasion resistance together with high levels of comfort and workability. An intermediate grade brown PVC glove, Superflex Brown[™] offers flexibility and comfort with a rough surface finish for better grip. Superflex Brown™ also delivers broad spectrum chemical and abrasion resistance. A PVC/Nitrile blend is also available in the **Snorkel™** product for greater durability.

		•	0	,		
Product code	Product	Thickness	Length	Grip Pattern	Lining	Sizes
Supported - Co	otton Lining					
12-214	Petroflex™	n/a	36 cm	Textured	Jersey	10
4-644	Superflex Blue™	1.6 mm	30 cm	Textured	Cotton	9-11
4-662	Superflex Brown™	1.0 mm	30 cm	Textured	Jersey	9 & 10
3121 4121 Petroflex™ Superflex I	J 3121 Blue™ SuperflexBrown™				All Products	

PVC/Nitrile.



Natural rubber latex.

Disposable natural rubber latex gloves are ideal for very basic chemical protect. **Canners™** gloves are a more heavy-duty product and come in various options. **HyCare™** is a premium grade, cotton lined, preformed rubber glove which offers excellent durability and wearability in a range of hot and cold situations. Chemi-ProTM features a Neoprene coating over the natural rubber latex compound for additional protection and performance.

Product code	Product	Thickness	Length	Grip Pattern	Lining	Sizes
Disposable						
69-318	Conform™ XT PF*	0.08 mm	22 cm	Textured	Pwd/Free	XS-XL
844	Conform™*	0.05 mm	24 cm	Smooth	Powder	S-XL
Unsupported	· · · · · · · · · · · · · · · · · · ·					
343	Canners™ Gloves*	0.5 mm	30 cm	Raised	Unlined	7-10
352/354	Premium Pink/Blue*	0.5 mm	30 cm	Textured	Sliverlined	6.5-11
Supported - Co	otton Lining					
739	Hycare™*	n/a	30 cm	Textured	Cotton	S-XL
4121 Hycare™					∐ Hycare™	

Natural rubber latex (with Neoprene).

* Caution: These products contain natural rubber latex which may cause alle Note: Products listed represent those sold throughout the Asia Pacific region. Availability of certain products may vary from country to country.

s	Length	Grip Pattern	Lining	Sizes
	356 mm	Textured	Unlined	7-11
	305 mm	Smooth	Unlined	8-10
			All Products	

	36 cm	Raised	Jersey	9 &10	
All Products					

	30-32 cm	Raised	Flocklined	8-10				
All Products								
lergic reactions in some people.								

Make sure you choose the correct glove.

7

Australia: Level 3, 678 Victoria St, Richmond, Victoria, 3121 Telephone: 1800 337 041 Fax: 1800 803 578 Malaysia: Lot 16 Persiaran Perusahaan Section 23, Shah Alam, 40000 Telephone: +60 3 5541 9797 Fax: +60 3 5541 7955 Japan: 2nd Floor Ochanomizu Wing Building 15-13 Hongo 2-chome, Bunkyo-ku, Tokyo 113 0033 Telephone: +81 3 5805 3781 Fax: +61 3 5800 6171 For further information contact: protection@ap.ansell.com

Ansell, Ansell chemsafe and SpecWare are trademarks owned by Ansell Ltd, or one of its affiliates ©2004 Ansell Limited All Rights Reserved MKT0CC1231V01

